Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Med Virol ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2236823

ABSTRACT

Increasing evidence supports inter-species transmission of SARS-CoV-2 variants from humans to domestic or wild animals during the ongoing COVID-19 pandemic, which is posing great challenges to epidemic control. Clarifying the host range of emerging SARS-CoV-2 variants will provide instructive information for the containment of viral spillover. The spike protein (S) of SARS-CoV-2 is the key determinant of receptor utilization, and therefore amino acid mutations on S will probably alter viral host range. Here, to evaluate the impact of S mutations, we tested 27 pseudoviruses of SARS-CoV-2 carrying different spike mutants by infecting Hela cells expressing different angiotensin-converting enzyme 2 (ACE2) orthologs from 20 animals. Of these 27 pseudoviruses, 20 bear single mutation and the other 7 were cloned from emerging SARS-CoV-2 variants, including D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (B.1.429), and Mu (B.1.621). Using pseudoviral reporter assay, we identified that the substitutions of T478I and N501Y enabled the pseudovirus to utilize chicken ACE2, indicating potential infectivity to avian species. Furthermore, the S mutants of real SARS-CoV-2 variants comprising N501Y showed significantly acquired abilities to infect cells expressing mouse ACE2, indicating a critical role of N501Y in expanding SARS-CoV-2 host range. In addition, A262S and T478I significantly enhanced the utilization of various mammal ACE2. In summary, our results indicated that T478I and N501Y substitutions were two S mutations important for receptor adaption of SARS-CoV-2, potentially contributing to the spillover of the virus to many other animal hosts. Therefore, more attention should be paid to SARS-CoV-2 variants with these two mutations.

2.
Trends in Sciences ; 19(17), 2022.
Article in English | Scopus | ID: covidwho-2057198

ABSTRACT

SARS-CoV-2 has very recently posed a potential threat to humanity due to its very rapid rate of mutations and repairing mechanism. The spread of this virus is considered to have occurred in Wuhan, China in December 2019. Characterized by high rates of transmission, the virus is constantly evolving towards attaining higher rates of stability and transmissibility through acquiring mutations in its genome. Therefore, this study aims to analyse the mutational profiles of SARS-CoV-2 isolates. Analysis of the mutational profiles in individual SARS-CoV-2 proteins will allow us to look into the rates of mutations associated with each protein. Frequently mutated residues have been identified in this research by aligning 688 SARS-CoV-2 nucleotide sequences, which were downloaded from NCBI (National Center For Biotechnology Information) repository. Further, mutational frequencies of these mutated residues have been studied, which is instrumental in identifying the proteins that are resistant to changes, as well as the ones that have a greater proclivity towards incorporating mutations. © 2022, Walailak University. All rights reserved.

3.
Vaccines (Basel) ; 10(9)2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2044018

ABSTRACT

Since the SARS-CoV-2 Omicron variant (B.1.1.529) was declared a variant of concern (VOC) by the WHO on 24 November 2021, it has caused another global surge of cases. With extensive mutations in its spike glycoprotein, Omicron gained substantial capabilities to evade the antiviral immunity provided by vaccination, hybrid immunity, or monoclonal antibodies. The Omicron subvariants BA.1, BA.2, BA.2.12.1, BA.4 and BA.5 extended this immune evasion capability by having additional unique mutations in their respective spike proteins. The ongoing Omicron wave and emergence of new Omicron subvariants leads to additional concerns regarding the efficacy of the current antiviral measurements. To have a better understanding of the Omicron subvariants, this review summarizes reports of the immune evasion of subvariants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 as well as the molecular basis of immune evasion.

4.
Int J Biol Macromol ; 219: 980-997, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2031328

ABSTRACT

Omicron, another SARS-CoV-2 variant, has been recorded and reported as a VoC. It has already spread across >30 countries and is a highly mutated variant. We tried to understand the role of mutations in the investigated variants by comparison with previous characterized VoC. We have mapped the mutations in Omicron S-glycoprotein's secondary and tertiary structure landscape using bioinformatics tools and statistical software and developed different models. In addition, we analyzed the effect of diverse mutations in antibody binding regions of the S-glycoprotein on the binding affinity of the investigated antibodies. This study has chosen eight significant mutations in Omicron (D614G, E484A, N501Y, Q493K, K417N, S477N, Y505H G496S), and seven of them are located in the RBD region. We also performed a comparative analysis of the ΔΔG score of these mutations to understand the stabilizing or destabilizing properties of the investigated mutations. The analysis outcome shows that D614G, Q493K, and S477N mutations are stable mutations with ΔΔG scores of 0.351 kcal/mol, 0.470 kcal/mol, and 0.628 kcal/mol, respectively, according to DynaMut estimations. While other mutations (E484A, N501Y, K417N, Y505H, G496S) showed destabilizing results. The D614G, E484A, N501Y, K417N, Y505H, and G496S mutations increased the molecular flexibility of S-glycoprotein to interact with the ACE2 receptor, increasing the variant's infectivity. Our study will contribute to research on the SARS-CoV-2 variant, Omicron, by providing information on the mutational pattern and exciting properties of these eight significant mutations, such as antibody escape and infectivity quotient (stabilizing or destabilizing; increased or decreased molecular flexibility of S-glycoprotein to interact with the human ACE2 receptor).


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/genetics , Glycoproteins , Humans , Mutation , SARS-CoV-2/genetics
5.
Transpl Infect Dis ; : e13914, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1961997

ABSTRACT

BACKGROUND: The continuing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with decreased susceptibility to neutralizing antibodies is of clinical importance. Several spike mutations associated with immune escape have evolved independently in association with different variants of concern (VOCs). How and when these mutations arise is still unclear. We hypothesized that such mutations might arise in the context of persistent viral replication in immunosuppressed hosts. METHODS: Nasopharyngeal specimens were collected longitudinally from two immunosuppressed patients with persistent SARS-CoV-2 infection. Plasma was collected from these same patients late in disease course. SARS-CoV-2 whole genome sequencing was performed to assess the emergence and frequency of mutations over time. Select Spike mutations were assessed for their impact on viral entry and antibody neutralization in vitro. RESULTS: Our sequencing results revealed the intrahost emergence of spike mutations that are associated with circulating VOCs in both immunosuppressed patients (del241-243 and E484Q in one patient, and E484K in the other). These mutations decreased antibody-mediated neutralization of pseudotyped virus particles in cell culture, but also decreased efficiency of spike-mediated cell entry. CONCLUSIONS: These observations demonstrate the de novo emergence of SARS-CoV-2 spike mutations with enhanced immune evasion in immunosuppressed patients with persistent infection. These data suggest one potential mechanism for the evolution of VOCs and emphasize the importance of continued efforts to develop antiviral drugs for suppression of viral replication in hospitalized settings.

6.
Transfus Apher Sci ; 61(6): 103499, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915045

ABSTRACT

Although mass vaccination combined with some other preventative strategies and lockdown was associated with some early signs that COVID-19 infection might be fading away, the over 35 sites mutated new South African variant, "Omicron", emerged almost globally. Certain predisposed hosts may develop severe inflammatory thrombotic or mild long-Covid conditions due to this variant, which depletes T-cells, neutralizes antibodies circulating in the body, and coincidentally induces hypercoagulability. The surge of Omicron combined with Delta variants may confer unresponsiveness to the currently available vaccines even when the second dose is given up to 90 days. A drop in the antibody levels by 30 % has been identified in omicron-infected individuals, and one in five people is resistant to antibody treatment. This poses major concerns in the transmissibility rate of this new variant, even in a heavy mass vaccinated environment. This heavily mutated Omicron with other spike sites facilitates viral entry into the cells through conformational changes, irrespective of circulating neutralising antibody. Based on this consideration, we believe that speeding up mixed-matched vaccines with higher T-cell stimulation ability may improve the current situation. Moreover, large orders for antiviral drugs and monoclonal antibodies that could tackle Omicron combined with other variants may be valuable. The use of free polyclonal antibody donations and, hopefully, T-cell immunotherapy, may represent further breakthrough therapeutic interventions. However, Omicron infection is relatively milder than the ongoing Delta variant but is extremely contagious, and therefore the development of novel interventions is highly demanding.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19/prevention & control , Communicable Disease Control , SARS-CoV-2 , Antibodies, Monoclonal , Post-Acute COVID-19 Syndrome
7.
Clin Infect Dis ; 75(1): e354-e356, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1740823

ABSTRACT

In November 2021, the World Health Organization designated a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern, Omicron (PANGO lineage B.1.1.529). We report on the first 2 cases of breakthrough coronavirus disease 2019 (COVID-19) caused by Omicron in Japan among international travelers returning from the country with undetected infection. The spread of infection by Omicron were considered.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Japan , SARS-CoV-2/genetics
8.
J Virol ; 96(5): e0218621, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736028

ABSTRACT

Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2+ human cells. Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. IMPORTANCE Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.


Subject(s)
COVID-19/metabolism , Furin/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adaptation, Physiological , Animals , COVID-19/genetics , COVID-19/virology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Furin/genetics , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Mutation , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication
9.
BMC Infect Dis ; 22(1): 139, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1690952

ABSTRACT

BACKGROUND: Individuals with intellectual and developmental disabilities (IDD) living in congregated settings have increased risk of COVID-19 infection and mortality. Little is known about variant B.1.1.519 with spike mutation T478K, dominant in Mexico. We describe a linked SARS-CoV-2 B.1.1.519 outbreak in three IDD facilities in the Netherlands. METHODS: Following notification of the index, subsequent cases were identified through serial PCR group testing. Positive specimens were submitted for whole-genome-sequencing. Clinical information was gathered through interviews with staff members of the three facilities. RESULTS: Attack rate (AR) in clients of the index facility was 92% (23/25), total AR in clients 45% (33/73) and in staff members 24% (8/34). 55% (18/33) of client cases were asymptomatic, versus 25% (2/8) of staff members. Five client cases (15%) were hospitalized, two died (6%). Sequencing yielded the same specific B.1.1.519 genotype in all three facilities. No significant difference in median viral load was established comparing the B.1.1.519 variant with other circulating variants. The index of the linked outbreak reported no travel history or link to suspected or confirmed cases suggesting regional surveillance. Observed peak regional prevalence of B.1.1.519 during the outbreak supports this. CONCLUSION: AR, morbidity and mortality prior to control measures taking effect were high, probably related to the specific characteristics of the IDD setting and its clients. We assessed no evidence for intrinsic contributing properties of variant B.1.1.519. Our study argues for enhanced infection prevention protocols in the IDD setting, and prioritization of this group for vaccination against COVID-19.


Subject(s)
Assisted Living Facilities , COVID-19 , Cross Infection , COVID-19/epidemiology , COVID-19/virology , Cross Infection/epidemiology , Cross Infection/virology , Developmental Disabilities , Disease Outbreaks , Humans , Mutation , Netherlands/epidemiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
10.
Clin Infect Dis ; 74(1): 32-39, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1636422

ABSTRACT

BACKGROUND: Sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during 22 November to 1 December, 2020, and 10-29 January 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12 124 tests were performed yielding 1099 positives. From these, 928 high-quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.4% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to the "California" or "West Coast" variants (B.1.427 and B.1.429) were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.36 vs 0.29, risk ratio [RR] = 1.28; 95% confidence interval [CI]: 1.00-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.3%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants. Summary: We observed a growing prevalence and modestly elevated attack rate for "West Coast" severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Incidence , San Francisco/epidemiology
11.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1572669

ABSTRACT

Genotype screening was implemented in Italy and showed a significant prevalence of new SARS-CoV-2 mutants carrying Q675H mutation, near the furin cleavage site of spike protein. Currently, this mutation, which is expressed on different SARS-CoV-2 lineages circulating worldwide, has not been thoughtfully investigated. Therefore, we performed phylogenetic and biocomputational analysis to better understand SARS-CoV-2 Q675H mutants' evolutionary relationships with other circulating lineages and Q675H function in its molecular context. Our studies reveal that Q675H spike mutation is the result of parallel evolution because it arose independently in separate evolutionary clades. In silico data show that the Q675H mutation gives rise to a hydrogen-bonds network in the spike polar region. This results in an optimized directionality of arginine residues involved in interaction of spike with the furin binding pocket, thus improving proteolytic exposure of the viral protein. Furin was predicted to have a greater affinity for Q675H than Q675 substrate conformations. As a consequence, Q675H mutation could confer a fitness advantage to SARS-CoV-2 by promoting a more efficient viral entry. Interestingly, here we have shown that Q675H spike mutation is documented in all the VOCs. This finding highlights that VOCs are still evolving to enhance viral fitness and to adapt to the human host. At the same time, it may suggest Q675H spike mutation involvement in SARS-CoV-2 evolution.


Subject(s)
Furin/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , Genetic Fitness , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Mutation , Phylogeny , Protein Binding , Protein Conformation , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry
12.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 17.
Article in English | MEDLINE | ID: covidwho-1470942

ABSTRACT

To date, there have been rapidly spreading new SARS-CoV-2 "variants of concern". They all contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for immune escape. Here we report on the efficacy of common dandelion (Taraxacum officinale) to block protein-protein interaction of SARS-COV-2 spike to the human ACE2 receptor. This could be shown for the wild type and mutant forms (D614G, N501Y, and a mix of K417N, E484K, and N501Y) in human HEK293-hACE2 kidney and A549-hACE2-TMPRSS2 lung cells. High-molecular-weight compounds in the water-based extract account for this effect. Infection of the lung cells using SARS-CoV-2 spike D614 and spike Delta (B.1.617.2) variant pseudotyped lentivirus particles was efficiently prevented by the extract and so was virus-triggered pro-inflammatory interleukin 6 secretion. Modern herbal monographs consider the usage of this medicinal plant as safe. Thus, the in vitro results reported here should encourage further research on the clinical relevance and applicability of the extract as prevention strategy for SARS-CoV-2 infection in terms of a non-invasive, oral post-exposure prophylaxis.

13.
J Infect Dis ; 224(6): 989-994, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429251

ABSTRACT

The SARS-CoV-2 B.1.617 variant emerged in the Indian state of Maharashtra in late 2020. There have been fears that 2 key mutations seen in the receptor-binding domain, L452R and E484Q, would have additive effects on evasion of neutralizing antibodies. We report that spike bearing L452R and E484Q confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies following either first or second dose. The effect is similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. These data demonstrate reduced sensitivity to vaccine-elicited neutralizing antibodies by L452R and E484Q but lack of synergistic loss of sensitivity.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immune Evasion , Mutation , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19 Vaccines/immunology , Chlorocebus aethiops , HEK293 Cells , Humans , India , Protein Binding , SARS-CoV-2/immunology , Serine Endopeptidases , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
14.
Viruses ; 13(7)2021 06 23.
Article in English | MEDLINE | ID: covidwho-1289015

ABSTRACT

A 59-year-old male with follicular lymphoma treated by anti-CD20-mediated B-cell depletion and ablative chemotherapy was hospitalized with a COVID-19 infection. Although the patient did not develop specific humoral immunity, he had a mild clinical course overall. The failure of all therapeutic options allowed infection to persist nearly 300 days with active accumulation of SARS-CoV-2 virus mutations. As a rescue therapy, an infusion of REGEN-COV (10933 and 10987) anti-spike monoclonal antibodies was performed 270 days from initial diagnosis. Due to partial clearance after the first dose (2.4 g), a consolidation dose (8 g) was infused six weeks later. Complete virus clearance could then be observed over the following month, after he was vaccinated with the Pfizer-BioNTech anti-COVID-19 vaccination. The successful management of this patient required prolonged enhanced quarantine, monitoring of virus mutations, pioneering clinical decisions based upon close consultation, and the coordination of multidisciplinary experts in virology, immunology, pharmacology, input from REGN, the FDA, the IRB, the health care team, the patient, and the patient's family. Current decisions to take revolve around patient's follicular lymphoma management, and monitoring for virus clearance persistence beyond disappearance of REGEN-COV monoclonal antibodies after anti-SARS-CoV-2 vaccination. Overall, specific guidelines for similar cases should be established.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/complications , Humans , Immunity, Humoral , Lymphocyte Depletion , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/therapy , Male , Middle Aged , SARS-CoV-2/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
15.
Cell Rep ; 35(13): 109292, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1281394

ABSTRACT

We report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike ΔH69/V70 in multiple independent lineages, often occurring after acquisition of receptor binding motif replacements such as N439K and Y453F, known to increase binding affinity to the ACE2 receptor and confer antibody escape. In vitro, we show that, although ΔH69/V70 itself is not an antibody evasion mechanism, it increases infectivity associated with enhanced incorporation of cleaved spike into virions. ΔH69/V70 is able to partially rescue infectivity of spike proteins that have acquired N439K and Y453F escape mutations by increased spike incorporation. In addition, replacement of the H69 and V70 residues in the Alpha variant B.1.1.7 spike (where ΔH69/V70 occurs naturally) impairs spike incorporation and entry efficiency of the B.1.1.7 spike pseudotyped virus. Alpha variant B.1.1.7 spike mediates faster kinetics of cell-cell fusion than wild-type Wuhan-1 D614G, dependent on ΔH69/V70. Therefore, as ΔH69/V70 compensates for immune escape mutations that impair infectivity, continued surveillance for deletions with functional effects is warranted.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Immune Evasion , Mutation , Pandemics , Phylogeny , Protein Binding , Recurrence , SARS-CoV-2/immunology , Vero Cells
16.
Microorganisms ; 9(4)2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1167666

ABSTRACT

BACKGROUND: International travel is a major driver of the introduction and spread of SARS-CoV-2. AIM: To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. METHODS: In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. RESULTS AND CONCLUSION: We found 28 different lineages of SARS-CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (Δ69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion Δ69/Δ70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the Δ69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections.

17.
Emerg Infect Dis ; 27(5): 1522-1524, 2021 05.
Article in English | MEDLINE | ID: covidwho-1090424

ABSTRACT

Uncertainty remains about how long the protective immune responses against severe acute respiratory syndrome coronavirus 2 persists, and suspected reinfection in recovered patients has been reported. We describe a case of reinfection from distinct virus lineages in Brazil harboring the E484K mutation, a variant associated with escape from neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Brazil , Genomics , Humans , Mutation , Reinfection , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL